## **Moose Creek Wastewater System**

Sewage Works #120002193

## **Annual Report**

Prepared for: Township of North Stormont

Reporting Period of January 1<sup>st</sup> – December 31<sup>st</sup> 2018

Issued: March 25, 2019

Revision: 0

**Operating Authority:** 



This report has been prepared to meet the requirements of Certificate of Approval #3-1555-91-936

## **Table of Contents**

| Operations and Compliance Reliability Indices1  |
|-------------------------------------------------|
| System Process Description1                     |
| Groundwater Monitoring Program1                 |
| Wastewater System Flows2                        |
| Raw Flows                                       |
| Effluent Flow3                                  |
| Effluent Quality Assurance or Control Measures4 |
| Effluent Quality                                |
| Carbonaceous Biochemical Oxygen Demand (5-Day)5 |
| Total Suspended Solids5                         |
| Total Phosphorus6                               |
| Total Ammonia Nitrogen6                         |
| Hydrogen Sulphide7                              |
| pH7                                             |
| Operating Issues                                |
| Maintenance8                                    |
| Flow Meter Calibrations and Maintenance8        |
| Maintenance Summary8                            |
| Notice of Modifications                         |
| Sludge Generation9                              |
| Summary of Complaints9                          |
| Summary of Abnormal Discharge Events9           |
| Bypass/Overflow9                                |
| Spills9                                         |
| Performance Assessment ReportsA                 |
| Groundwater Monitoring ResultsB                 |
| Flow Meter Calibration CertificatesC            |
| Non-Compliance Correspondence to MECPD          |

## **Operations and Compliance Reliability Indices**

| Compliance Event                    | # of Events |
|-------------------------------------|-------------|
| Ministry of Environment Inspections | 0           |
| Ministry of Labour Inspections      | 0           |
| Non-Compliance                      | 3           |
| Spills                              | 0           |
| Sewer Main Blockages                | 0           |

## **System Process Description**

Moose Creek's wastewater system began operation in 1995. It consists of a gravity fed sanitary sewage collection system, one pumping station and a wastewater treatment lagoon. The pumping station is located on Simeon Lane in Moose Creek and pumps wastewater from the collection system to the lagoon.

Moose Creek's sewage lagoon system consists of two facultative cells of equal size equipped with mechanical aeration. The cells are constructed with a high density polyethylene geomembrane liner and an underdrain system with an associated groundwater pumping station to prevent uplift of the liner. The total capacity of the lagoon system is 110,376 m<sup>3</sup>. A chemical injection building is located on site housing a 10,000 litre storage tank and two chemical feed pumps (one duty and one standby). Aluminum sulphate is injected for phosphorus control as wastewater is pumped to the lagoons.

The lagoon operates on an annual discharge basis in accordance with the Certificate of Approval. Effluent is discharged through a 400 mm outfall to the Moose Creek Drain.

## **Groundwater Monitoring Program**

A groundwater monitoring/liner integrity program was initiated in 1995 as required under Condition 16 of the facility's Certificate of Approval. The initial findings indicated that groundwater at the lagoon site was characterized by nitrate and bacteriological contamination, likely associated with the historical agricultural use of the property. Appendix B contains the results of the 2018 Groundwater Monitoring Program carried out in accordance with the protocol set out in Golder Associates' report dated April 16, 2002. The report sets the lagoon liner leak trigger mechanism at >0.33 mg/L nitrite or >3.36 mg/L nitrate at the underdrain. Spring and fall underdrain nitrite levels were both <0.10 mg/L while the nitrate levels were 0.36 mg/L and <0.10 mg/L, respectively. Groundwater sample results have remained fairly consistent over the duration of the program. The overall consistency of the data indictes that the lagoons have not adversely affected the quality of the groundwater.

The charts in Appendix B illustrate historical spring and fall groundwater elevations in the lagoon's monitoring wells since 2002. The monitoring wells are arranged on the charts based on groundwater flow direction. The data indicates that the difference in elevation as the groundwater flows down gradient has remained relatively consistent over the duration of the monitoring program. It is expected that if groundwater mounding occurred at the site, the difference in elevation as the water flowed down gradient would begin to diminish. OCWA will continue to utilize the existing groundwater monitoring program in 2019.

### **Wastewater System Flows**

The hydraulic flows reaching the sewage lagoons in 2018 averaged 214  $m^3$ /day which represents 71% of the 302  $m^3$ /day design capacity.

#### **Raw Flows**

2018 Raw Flows:





#### Annual Raw Flow Comparison:

#### **Effluent Flow**

A total of 91,320  $m^3$  was discharged from Moose Creek's sewage lagoons in the spring of 2018. The maximum allowable flow of 11,040  $m^3/d$  was exceeded during the discharge as depicted below. Please refer to the non-compliance correpondence to the Ministry attached in Appendix D for details.



|                    | 23-Apr | 24-Apr | 25-Apr | 26-Apr | 27-Apr | 28-Apr | 29-Apr | 30-Apr |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| → Max. Rate (m3/d) | 11,040 | 11,040 | 11,040 | 11,040 | 11,040 | 11,040 | 11,040 | 11,040 |
|                    | 9,730  | 11,249 | 11,622 | 11,175 | 11,886 | 11,886 | 11,886 | 11,886 |

### **Effluent Quality Assurance or Control Measures**

Effluent control measures include pre-discharge sampling and testing of lagoon cell contents prior to discharge. The samples are collected by the Ontario Clean Water Agency's competent and licensed staff using approved methods and protocols for sampling including those specified in the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works", the Ministry's publication, "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" and the publication, "Standard Methods for the Examination of Water and Wastewater".

Based on the total phosphorus results from cells contents sampling prior to discharge, this lagoon system may be batched dosed with aluminum sulphate for phosphorus control.

All effluent samples collected during the reporting period were submitted to Eurofins laboratory in Ottawa for analysis, with the exception of pH and temperature. Eurofins is accredited by the Canadian Association for Laboratory Accreditation (CALA). Accredited labs must meet strict provincial guidelines including an extensive quality assurance/quality control program. By choosing this laboratory, OCWA is ensuring appropriate control measures are undertaken during sample analysis.

The pH and temperature were analyzed in the field at the time of sample collection by certified operators to ensure accuracy and precision of the results obtained.

## **Effluent Quality**

The seasonal average effluent objective and limit for total suspended solids (TSS) were exceeded during the lagoon discharge. In addition, the objective for total phosphorus was slightly exceeded. Please refer to the non-compliance correpondence to the Ministry attached in Appendix C and the 'Operational Issues' section of this report for details.

The effluent results from the spring discharge are tabulated below. Further details on the discharge sampling results including the upstream and downstream sample results can be found in the Lagoon Performance Assessment Report (Appendix A).

#### Carbonaceous Biochemical Oxygen Demand (5-Day)

| Discharge Period | Seasonal Average | Limit | Objective | Exceedance |
|------------------|------------------|-------|-----------|------------|
| Spring           | 14.0             | 30    | 15        | No         |

Effluent CBOD<sub>5</sub> Results:



|                        | 23-Apr | 25-Apr | 28-Apr | 30-Apr |
|------------------------|--------|--------|--------|--------|
| ← Limit (mg/L)         | 30     | 30     | 30     | 30     |
| Objective (mg/L)       | 15     | 15     | 15     | 15     |
| Result - Spring (mg/L) | 10     | 12     | 20     | 14     |

### **Total Suspended Solids**

| Discharge Period | Seasonal Average | Limit | Objective | Exceedance |
|------------------|------------------|-------|-----------|------------|
| Spring           | 31.0             | 30    | 20        | Yes*       |

\*The average concentration for TSS exceeded the objective and limit specified in the C of A. Please see the non-compliance correspondence to the Ministry attached in Appendix D.

Effluent TSS Results:



|                        | 23-Apr | 25-Apr | 28-Apr | 30-Apr |
|------------------------|--------|--------|--------|--------|
| ← Limit (mg/L)         | 30     | 30     | 30     | 30     |
| Objective (mg/L)       | 20     | 20     | 20     | 20     |
| Result - Spring (mg/L) | 29     | 22     | 48     | 25     |

### Total Phosphorus

| Discharge Period | Seasonal Average | Limit | Objective | Exceedance      |
|------------------|------------------|-------|-----------|-----------------|
| Spring           | 0.51             | 0.7   | 0.5       | Yes – Objective |

Effluent TP Results:



|                        | 23-Apr | 25-Apr | 28-Apr | 30-Apr |
|------------------------|--------|--------|--------|--------|
| → Limit (mg/L)         | 0.7    | 0.7    | 0.7    | 0.7    |
| Objective (mg/L)       | 0.5    | 0.5    | 0.5    | 0.5    |
| Result - Spring (mg/L) | 0.43   | 0.51   | 0.54   | 0.55   |

### Total Ammonia Nitrogen

| Discharge Period | Seasonal Average | Limit | Objective | Exceedance |
|------------------|------------------|-------|-----------|------------|
| Spring           | 5.2              | 15    | n/a       | No         |

Effluent TAN Results:



|                        | 23-Apr | 25-Apr | 28-Apr | 30-Apr |
|------------------------|--------|--------|--------|--------|
| → Limit (mg/L)         | 15     | 15     | 15     | 15     |
| Result - Spring (mg/L) | 5.12   | 4.43   | 5.7    | 5.3    |

#### Hydrogen Sulphide

| Discharge Period | Seasonal Average | Limit | Objective | Exceedance |
|------------------|------------------|-------|-----------|------------|
| Spring           | <0.03            | 0.17  | Absent    | No         |

#### Effluent Undissociated H<sub>2</sub>S Results:



|                  | 23-Apr | 25-Apr | 28-Apr | 30-Apr |
|------------------|--------|--------|--------|--------|
| → Limit (mg/L)   | 0.17   | 0.17   | 0.17   | 0.17   |
| Objective (mg/L) | 0      | 0      | 0      | 0      |
| Result - Spring  | 0      | 0.03   | 0      | 0      |

<u>рН</u>

| Discharge Period | Seasonal Average | Limit | Objective | Exceedance |
|------------------|------------------|-------|-----------|------------|
| Spring           | 8.27             | n/a   | n/a       | n/a        |

Effluent pH Results:



There are no pH objectives or limits specified in the Certificate of Approval.

## **Operating Issues**

Historically, ammonia compliance during the spring discharge has been an issue for Moose Creek's lagoons. In an effort to enhance nitrification within the lagoon cells, the blowers are operated on a daily basis in advance of the spring discharge. The early blower operation helps dissolve the ice caps and increase the oxygen content of the wastewater, which encourages re-establishment of the nitrifying bacteria population.

In the spring of 2018, cold temperatures extending well into the permitted discharge period delayed the start of Moose Creek's lagoon discharge. The blowers in both cells were started on March 13, 2018, but persistent cold temperatures into April caused enough ice to remain on the lagoons that batch dosing by boat had to be delayed. OCWA batch dosed the lagoons with aluminum sulphate on Friday, April 20<sup>th</sup> and started the discharge on Monday, April 23<sup>rd</sup>. In attempt to ensure enough capacity until the next discharge period and remain within the discharge time frame specified in the Certificate of Approval, the flow rate was maintained at approximately the maximum allowed. However, the daily maximum of 11,040 m<sup>3</sup>/day specified in section 13(2) was slightly exceeded on most days during the discharge. It should be noted that stream flows remained higher than normal in the receiving stream throughout the discharge period.

Elevated TSS concentrations occurred throughout the spring discharge in 2018. The seasonal average limit and objective were both exceeded. It is suspected that algae caused the elevated TSS in the effluent samples. In conjunction with the high flow rates this also resulted in the average loading for TSS over the discharge period to exceed the limit of 331 kg/d.

## Maintenance

#### Flow Meter Calibration and Maintenance

Copies of the flow meter calibration certificates for 2018 are attached in Appendix C.

#### **Maintenance Summary**

| Descript | tion                                                   |
|----------|--------------------------------------------------------|
| -        | performed routine sewer flushing and wet well cleaning |
| -        | performed routine camera inspection of sewer mains     |
| -        | repaired/upgraded manholes in collection system        |
| -        | performed pest control at lagoon                       |
| -        | repaired alum process piping                           |
| -        | replaced damaged gates at lagoon                       |

#### **Notice of Modifications**

| Date            | Process | Modification | Status |  |  |  |
|-----------------|---------|--------------|--------|--|--|--|
| None to report. |         |              |        |  |  |  |

## **Sludge Generation**

Sludge depth is monitored periodically, and plans for sludge removal are made as required for optimal operation of the lagoon system.

## **Summary of Complaints**

There were no complaints documented during the reporting period.

## **Summary of Abnormal Discharge Events**

#### **Bypass/Overflow**

No bypasses or overflows occurred during the reporting period.

#### <u>Spills</u>

No overflows occurred during the reporting period.

## Appendix A

**Performance Assessment Reports** 

#### ONTARIO CLEAN WATER AGENCY PERFORMANCE ASSESSMENT REPORT

| MUNICIPALITY:  | TOWNSHIP OF NORTH STORMONT                                                     |
|----------------|--------------------------------------------------------------------------------|
| PROJECT:       | MOOSE CREEK WASTEWATER TREATMENT FACILITY                                      |
| PROJECT NUM .: | <u>6990</u>                                                                    |
| WORKS NUM .:   | <u>120002193</u>                                                               |
| DESCRIPTION:   | TWO CELL FACULATATIVE AERATED LAGOON SYSTEM C/W ONE SEWAGE PUMPING STATION AND |
|                | CONTINUOUS ALUM FEED SYSTEM FOR PHOSPHORUS REMOVAL                             |

| MONTH    |                   | FL                | .OWS              |                   |           | ALUM   | BIOCHE  | MICAL O2 D | EMAND   | SUS     | PENDED SC | LIDS    | P       | HOSPHORU | S       | TKN     |
|----------|-------------------|-------------------|-------------------|-------------------|-----------|--------|---------|------------|---------|---------|-----------|---------|---------|----------|---------|---------|
|          | TOTAL             | AVG DAY           | MAX DAY           | EFFLUENT          | DISCHARGE | AVG    | AVG RAW | AVG EFF    | PERCENT | AVG RAW | AVG EFF   | PERCENT | AVG RAW | AVG EFF  | PERCENT | AVG RAW |
|          | FLOW              | FLOW              | FLOW              | FLOW              | DURATION  | DOSE   | BOD     | CBOD       | REMOVAL | SS      | SS        | REMOVAL | PHOS.   | PHOS.    | REMOVAL | TKN     |
|          | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (days)    | (mg/L) | (mg/L)  | (mg/L)     | (%)     | (mg/L)  | (mg/L)    | (%)     | (mg/L)  | (mg/L)   | (%)     | (mg/L)  |
| JAN      | 7,692             | 248               | 521               |                   |           | 11.9   | 145     |            |         | 363     |           |         | 7.81    |          |         | 74.8    |
| FEB      | 7,430             | 265               | 486               |                   |           | 10.8   | 326     |            |         | 270     |           |         | 6.93    |          |         | 77.5    |
| MAR      | 9,348             | 302               | 554               |                   |           | 13.5   | 130     |            |         | 136     |           |         | 3.57    |          |         | 37.7    |
| APR      | 10,826            | 361               | 487               | 91,320            | 8         | 12.7   | 42      | 14         |         | 213     | 31        |         | 3.13    | 0.51     |         | 36.5    |
| MAY      | 7,896             | 255               | 383               |                   |           | 14.4   | 146     |            |         | 324     |           |         | 3.8     |          |         | 58.6    |
| JUN      | 5,674             | 189               | 260               |                   |           | 13.7   | 124     |            |         | 196     |           |         | 5.67    |          |         | 47.1    |
| JUL      | 4,501             | 145               | 185               |                   |           | 15.7   | 132     |            |         | 336     |           |         | 5.2     |          |         | 46.3    |
| AUG      | 4,428             | 143               | 167               |                   |           | 16.2   | 242     |            |         | 350     |           |         | 10.9    |          |         | 81.3    |
| SEPT     | 4,148             | 138               | 168               |                   |           | 12.8   | 197     |            |         | 278     |           |         | 6.95    |          |         | 36.2    |
| OCT      | 4,321             | 139               | 171               |                   |           | 16.6   | 232     |            |         | 222     |           |         | 8.09    |          |         | 92.4    |
| NOV      | 5,249             | 175               | 223               |                   |           | 10.4   | 242     |            |         | 344     |           |         | 2.17    |          |         | 99.3    |
| DEC      | 6,584             | 212               | 314               |                   |           | 29.9   | 127     |            |         | 130     |           |         | 3.55    |          |         | 42.9    |
| TOTAL    | 78,097            |                   |                   | 91,320            | 8         |        |         |            |         |         |           |         |         |          |         |         |
| AVG      |                   | 214               |                   |                   |           | 14.9   | 174     | 14         | 91.9    | 264     | 31.0      | 88.2    | 5.65    | 0.51     | 91.0    | 60.9    |
| MAX      |                   |                   | 554               |                   |           |        | 326     |            |         | 363     |           |         | 10.9    |          |         |         |
| CRITERIA |                   | 302               |                   |                   | 20        |        |         | 30         |         |         | 30        |         |         | 0.7      |         |         |
| COMPLIAN | CE                | YES               |                   |                   | YES       |        |         | YES        |         |         | NO        |         |         | YES      |         |         |

|                    | ACTUAL  | CRITERIA | COMPLIANCE |
|--------------------|---------|----------|------------|
| START DATE         | Apr. 23 | Mar.15   | YES        |
| END DATE           | Apr. 30 | Apr.30   | YES        |
| MAX DURATION (DAYS | 8       | 20       | YES        |

COMMENTS: PERCENT REMOVAL BASED ON 12 MONTHS OF RAW COMPOSITE SAMPLES

| YEAR:            | <u>2018</u>     |
|------------------|-----------------|
| WATER COURSE:    | MOOSE CREEK     |
| DESIGN CAPACITY: | <u>302 m³/d</u> |

#### **ONTARIO CLEAN WATER AGENCY** LAGOON PERFORMANCE ASSESSMENT REPORT

| MUNICIPALITY: | TOWNSHIP OF NORTH STORMONT                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------|
| PROJECT:      | MOOSE CREEK LAGOON SYSTEM                                                                                  |
| PROJECT #:    | <u>6990</u>                                                                                                |
| DESCRIPTION:  | TWO CELL FACULTATIVE AERATED LAGOON SYSTEM WITH ONE SEWAGE PUMPING STATION AND CONTINUOUS ALUM FEED SYSTEM |
|               | FOR PHOSPHORUS REMOVAL                                                                                     |

|                            | SAMPLE RESULTS                   |        |        |        |        |         |                  | 91,320 m <sup>3</sup> |
|----------------------------|----------------------------------|--------|--------|--------|--------|---------|------------------|-----------------------|
| GRAB SAMPLE                |                                  |        |        |        |        |         |                  |                       |
|                            | SAMPLE DATE                      | 23-Apr | 25-Apr | 28-Apr | 30-Apr | Average | C OF A OBJECTIVE | C OF A LIMIT          |
|                            | CBOD                             | 10     | 12     | 20     | 14     | 14.0    | 15.0             | 30                    |
|                            | TSS                              | 29     | 22     | 48     | 25     | 31.0    | 20.0             | 30                    |
| START, END, AND            | TP                               | 0.43   | 0.51   | 0.54   | 0.55   | 0.51    | 0.5              | 0.7                   |
| EVERY 0.5 M OF<br>DRAWDOWN | NH3 + NH4                        | 5.12   | 4.43   | 5.7    | 5.3    | 5.2     | N/A              | 15                    |
| DURING                     | H <sub>2</sub> S                 | <0.02  | 0.03   | <0.02  | < 0.05 | 0.019   | ABSENT           | 0.17                  |
| DISCHARGE                  | TKN                              | 13.4   | 12.6   | 14.4   | 14.3   |         |                  |                       |
|                            | Nitrite                          | <0.10  | <0.10  | <0.10  | <0.10  |         |                  |                       |
|                            | Nitrate                          | <0.10  | <0.10  | 0.14   | 0.18   |         |                  |                       |
|                            | pH (on site)                     | 8.3    | 8.46   | 8      | 8.35   |         |                  |                       |
| AT LAGOON                  | Conductivity (on site)           | 700    | 600    | 620    | 660    |         |                  |                       |
| EFFLUENT<br>DISCHARGE      | Temp (on site)                   | 7.1    | 8.5    | 8.8    | 10     |         |                  |                       |
| OUTFALL                    | E. coli                          | 330    | <10    | <10    | 1820   | ]       |                  |                       |
| STRUCTURE                  | un-ionized NH3 (calc)**          | 0.09   | 0.11   | 0.17   | 0.13   | ]       |                  |                       |
|                            | undissociated H <sub>2</sub> S** | ND     | 0.0015 | ND     | ND     |         |                  |                       |

|                  |        | UPSTREA | M RESULT | s      |
|------------------|--------|---------|----------|--------|
|                  |        |         |          |        |
| SAMPLE DATE      | 23-Apr | 25-Apr  | 28-Apr   | 30-Apr |
| CBOD             | 1      | 1       | 1        | <1     |
| TSS              | 4      | 4       | 4        | 33     |
| TP               | 0.05   | 0.08    | 0.08     | 0.11   |
| NH3 + NH4        | <0.05  | 0.14    | < 0.05   | 0.14   |
| H <sub>2</sub> S | <0.01  | <0.01   | 0.01     | 0.03   |
| TKN              | 1.2    | 1       | 1.2      | 1.5    |
| Nitrite          | <0.10  | <0.10   | <0.10    | <0.10  |
| Nitrate          | 1.99   | 2.01    | 2.88     | 3.19   |
| pН               | 8      | 8.07    | 8.30     | 8.25   |
| Conductivity     | 950    | 810.0   | 940      | 980    |
| Temp (on site)   | 6.4    | 7.1     | 7.9      | 7.7    |
| E. coli          | 10     | <10     | <10      | 40     |

|                  | DC     | WNSTRE | AM RESUL | .TS    |
|------------------|--------|--------|----------|--------|
|                  |        |        |          |        |
| SAMPLE DATE      | 23-Apr | 25-Apr | 28-Apr   | 30-Apr |
| CBOD             | 1      | 5      | 5        | 3      |
| TSS              | 4      | 25     | 31       | 19     |
| TP               | 0.05   | 0.22   | 0.19     | 0.16   |
| NH3 + NH4        | 0.06   | 1.51   | 2.32     | 0.85   |
| H <sub>2</sub> S | <0.02  | <0.01  | <0.01    | <0.01  |
| TKN              | 0.9    | 4.6    | 4.4      | 3.3    |
| Nitrite          | <0.10  | <0.10  | <0.10    | <0.10  |
| Nitrate          | 1.96   | 1.92   | 2        | 2.34   |
| pН               | 8.1    | 8.23   | 8.30     | 8.20   |
| Conductivity     | 950    | 720    | 880      | 890    |
| Temp (on site)   | 6.0    | 6.9    | 7.8      | 7.7    |
| E. coli          | <10    | 10     | <10      | 560    |

<u>2018</u> <u>SOUTH NATION RIVER</u> <u>302 m³/day</u>

YEAR: WATER COURSE: DESIGN CAPACITY:



CBOD/SS/TP exceed when the seasonal average exceeds criteria  $NH_3/NH_4 \& H_2S$  exceed when single sample result exceed

\*\*Undissociated H2S, unionized NH3, based on in-house calculations

|                         | AVG. LOADING | C OF A LIMIT |
|-------------------------|--------------|--------------|
| CBOD (kg/d)             | 159.8        | 331          |
| TSS (kg/d)              | 353.9        | 331          |
| TP (kg/d)               | 5.8          | 7.7          |
| NH3 + NH4 (kg/d)        | 58.8         | 166          |
| H <sub>2</sub> S (kg/d) | ND           | 1.9          |

|                     | 23-Apr | 24-Apr | 25-Apr | 26-Apr | 27-Apr | 28-Apr | 29-Apr | 30-Apr |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| DISCHARGE FLOW      |        |        |        |        |        |        |        |        |
| (m <sup>3</sup> /d) | 9,730  | 11,249 | 11,622 | 11,175 | 11,886 | 11,886 | 11,886 | 11,886 |

| Daily Loading | 23-Apr | 24-Apr | 25-Apr | 26-Apr | 27-Apr | 28-Apr | 29-Apr | 30-Apr | Average |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| BOD (kg)      | 97.3   | 135.0  | 139.5  | 223.5  | 237.7  | 237.7  | 166.4  | 166.4  | 175.4   |
| TSS (kg)      | 282.2  | 247.5  | 255.7  | 536.4  | 570.5  | 570.5  | 297.2  | 297.2  | 382.1   |
| TP (kg)       | 4.2    | 5.7    | 5.9    | 6.0    | 6.4    | 6.4    | 6.5    | 6.5    | 6.0     |
| NH3 (kg)      | 49.8   | 49.8   | 51.5   | 63.9   | 68.0   | 68.0   | 63.5   | 63.5   | 59.7    |
| H2S (kg)      | ND     | 0.34   | 0.35   | ND     | ND     | ND     | ND     | ND     | N/A     |

### ONTARIO CLEAN WATER AGENCY MOOSE CREEK SEWAGE LAGOON 2018

## DETERMINATION OF UN-IONIZED AMMONIA ( $NH_3$ ) IN WASTEWATER EFFLUENT

| Sample<br>Date | Sample Stream<br>Temperature<br>(°C) | Degrees Kelvin | Dissociation<br>Constant<br>pKa | Sample<br>pH<br>on-site | Fraction of<br>Un-ionized<br>Ammonia | Total<br>Ammonia (mg/L)<br>(NH₃ +NH₄+as N) |      |
|----------------|--------------------------------------|----------------|---------------------------------|-------------------------|--------------------------------------|--------------------------------------------|------|
| 23-Apr         | 6.0                                  | 279.15         | 9.87                            | 8.1                     | 0.0167                               | 5.12                                       | 0.09 |
| 25-Apr         | 6.9                                  | 280.05         | 9.84                            | 8.23                    | 0.0241                               | 4.43                                       | 0.11 |
| 28-Apr         | 7.8                                  | 280.95         | 9.81                            | 8.30                    | 0.0302                               | 5.72                                       | 0.17 |
| 30-Apr         | 7.7                                  | 280.85         | 9.81                            | 8.20                    | 0.0239                               | 5.34                                       | 0.13 |

## **Appendix B**

**Groundwater Monitoring Results** 

|                   | DATE             | 29-Apr-14 | 29-Oct-14 | 22-Apr-15 | 10-Nov-15 | 20-Apr-16 | 18-Oct-16 | 31-Oct-17 | 10-Apr-18 | 22-Oct-18 |
|-------------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Monitor 95-1A     |                  |           |           |           |           |           |           |           |           |           |
|                   | Total Coliforms  | <10       | 1500      | 100       | 10        | <10       | <10       | 1600      | 50        | <10       |
|                   | Faecal Coli      | <10       | 250       | <10       | 0         | <10       | <10       | <10       | <10       | <10       |
|                   | DRP              | 0.03      | 0.03      | 0.03      | 0.06      | 0.04      | 0.02      | 0.03      | <0.03     | <0.03     |
|                   | Ammonia (N-NH3)  | 0.08      | 0.12      | 0.21      | 0.063     | 0.324     | 0.184     | 0.65      | 0.36      | 0.35      |
|                   | Nitrite (N-N02)  | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
|                   | Nitrate (N-NO3)  | 0.10      | 0.22      | <0.10     | 0.26      | <0.10     | <0.10     | <0.10     | 0.36      | 0.12      |
|                   | Total Phosphorus | 0.39      | 0.46      | 1.36      | 0.48      | 0.96      | 2         | 0.24      | 1.2       | 1.05      |
|                   | Conductivity     | 387       | 371       | 403       | 388       | 399       | 614       | 378       | 398       | 412       |
|                   | рН               | 8.28      | 8.17      | 8.21      | 8.33      | 8.16      | 7.87      | 8.23      | 8.28      | 8.15      |
| Monitor 95-1B     |                  |           |           |           |           |           |           |           |           |           |
|                   | Total Coliforms  | <10       | <10       | <10       | 6         | <10       | <10       | 300       | <10       | 20        |
|                   | Faecal Coli      | <10       | <10       | <10       | 0         | <10       | <10       | <10       | <10       | <10       |
|                   | DRP              | <0.01     | 0.01      | 0.01      | 0.1       | 0.03      | 0.03      | <0.03     | <0.03     | <0.03     |
|                   | Ammonia (N-NH3)  | 0.12      | 0.04      | 0.14      | <0.025    | 0.066     | 0.197     | 0.19      | 0.23      | 0.46      |
|                   | Nitrite (N-N02)  | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
|                   | Nitrate (N-NO3)  | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
|                   | Total Phosphorus | 0.43      | 1.20      | 0.41      | 0.35      | 0.44      | 1.39      | 0.33      | 1.02      | 11.7      |
|                   | Conductivity     | 742       | 660       | 743       | 754       | 721       | 405       | 959       | 896       | 830       |
|                   | рН               | 7.91      | 7.71      | 7.7       | 8.12      | 0.03      | 8.13      | 7.56      | 7.72      | 8.15      |
| MCL-2000          |                  |           |           |           |           |           |           |           |           |           |
| Lagoon in Use     | Total Coliforms  | 2700      | 114000    | 24000     | 18000     | 140       | 140       | 38000     | 3910      | 8000      |
|                   | Faecal Coli      | 210       | 35000     | 2770      | 3900      | <10       | <10       | 4920      | 1480      | 4900      |
|                   | DRP              | <0.01     | 0.27      | 0.98      | 0.86      | <0.01     | 0.78      | 0.11      | 1.25      | 0.03      |
|                   | Ammonia (N-NH3)  | 12.7      | 19.0      | 21.6      | 10.5      | <0.025    | 12.3      | 3.38      | 9.3       | 7.54      |
|                   | Nitrite (N-N02)  | <0.10     | <0.10     | <0.10     | 0.11      | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
|                   | Nitrate (N-NO3)  | <0.10     | 0.21      | <0.10     | <0.10     | <0.10     | <0.10     | 0.1       | <0.10     | <0.10     |
|                   | Total Phosphorus | 0.33      | 1.56      | 1.62      | 1.46      | <0.01     | 3.62      | 1.41      | 1.5       | 0.17      |
|                   | Conductivity     | 855       | 943       | 1000      | 988       | 655       | 1020      | 636       | 798       | 902       |
|                   | рН               | 7.8       | 7.79      | 7.89      | 8.3       | 8.07      | 7.58      | 7.89      | 7.9       | 8.04      |
| MCL-1000          |                  |           |           |           |           |           |           |           |           |           |
| Lagoon Underdrain | Total Coliforms  | 10        | 120       | 30        | 20        | <10       | <10       | 250       | 70        | 30        |
|                   | Faecal Coli      | <10       | 10        | <10       | 0         | <10       | <10       | <10       | <10       | <10       |
|                   | DRP              | <0.01     | <0.01     | <0.01     | 0.02      | <0.01     | <0.01     | <0.03     | <0.03     | <0.03     |
|                   | Ammonia (N-NH3)  | 0.16      | <0.02     | 0.14      | <0.025    | 0.517     | <0.025    | 0.13      | 0.12      | 0.11      |
| Trigger >0.33mg/L | Nitrite (N-N02)  | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| Trigger >3.36mg/L | Nitrate (N-NO3)  | 0.74      | 0.26      | 0.5       | 0.76      | <0.10     | 0.25      | 0.45      | 0.36      | <0.10     |
|                   | Total Phosphorus | 0.06      | 0.03      | 0.02      | <0.05     | 0.070     | 0.012     | 0.04      | 0.07      | 0.02      |
|                   | Conductivity     | 894       | 894       | 885       | 869       | 872       | 884       | 872       | 385       | 974       |
|                   | рН               | 7.58      | 7.80      | 7.54      | 8.1       | 7.48      | 7.77      | 7.91      | 7.96      | 7.96      |

## Lagoon Underdrain Ground Water Monitoring - Lab Results





# Appendix C

**Flow Meter Calibration Certificates** 



| Work Order #            | 699569                    | Meter Flow Verification (1y) 6990 | Status APPR                    |
|-------------------------|---------------------------|-----------------------------------|--------------------------------|
| Job Plan #              | METFLO01-A                | METER FLOW ANNUAL GENERIC         |                                |
| Project                 | NORSTM6990S               | -000                              |                                |
| Туре                    | PM                        |                                   | Scheduled Start Date 03-Mar-18 |
| Criticality             | 3                         |                                   |                                |
| Class                   | CALIBRATION               |                                   |                                |
|                         |                           |                                   |                                |
| Location                | 6990, Moose Cre           | eek WW Lagoon & CS                |                                |
| Location<br>Reported By | 6990, Moose Cre<br>MAXADN |                                   |                                |
|                         |                           |                                   |                                |

| Sequence | Asset      |                                      | Location           |                                                                               | Inspected |
|----------|------------|--------------------------------------|--------------------|-------------------------------------------------------------------------------|-----------|
| 1        | 0000101073 | METER FLOW LAGOON<br>DISCHARGE       | 6990-WLMO-P-<br>PC | 6990, Moose Creek WW Lagoon &<br>CS, Process, Process Control &<br>Monitoring | ď         |
| 2        | 0000101087 | METER FLOW MOOSE CREEK<br>RAW SEWAGE | 6990-WLMO-P-<br>PC | 6990, Moose Creek WW Lagoon &<br>CS, Process, Process Control &<br>Monitoring | 0         |

#### Safety Message

This Work Order (and accompanying Maintenance Procedure) have been developed to aid field personnel in the care and maintenance of the specified equipment. However, maintenance personnel are expected to look for and correct any defects which are not anticipated in the procedure. This document may not provide all the technical information that may be required, and it may be necessary to refer to the manufacturer's manual for further details.

The "As Found" and "As Left" readings, as well as any abnormalities found and any repairs carried out, are to be recorded in the Maximo WMS System.

Isolate and de-energize equipment in accordance with the lock-out procedure.

Take time to identify hazards and plan how each hazard will be eliminated or controlled. Work practices must be in accordance with the Occupational Health & Safety Act and the Ontario Clean Water Agency safety manual.

Ensure direct supervisor or their designate have been notified of entry into the site. This notification should provide approximate time and duration. On completion of duties notification is to be given that site has been vacated and secured.



| Task | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | RUNNING CHECKS                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1) Verify calibration parameters and programming parameters where applicable.                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 2) Ensure proper connections and grounding.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 3) Check display for any alarm or error codes.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20   | HAVE QUALIFIED TECHNICIAN CALIBRATE UNIT                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | <ol> <li>Have a qualified technician calibrate the unit, using actual flow method or flow simulator.</li> <li>Calibration records must be kept for a period of five years.</li> <li>Records shall include the level of accuracy of the equipment as found and as left.</li> <li>Calibration test equipment shall be certified annually and certification dates recorded on the calibration record. Some test equipment may not require calibration</li> </ol> |
| 30   | RECORD ADJUSTMENTS AND VERIFY OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | <sup>1.</sup> Record any adjustments, modifications or replacements made to the equipment during the calibration.                                                                                                                                                                                                                                                                                                                                             |
|      | <ul> <li><sup>2.</sup> Verify accuracy of electronic outputs to the end device as required based on theoretical versus actual values .{Chart recorders, SCADA, Outpost 5}.</li> <li><sup>3.</sup> Ensure all nameplate data is recorded and entered in WMS.</li> </ul>                                                                                                                                                                                        |
| 40   | COMPLETE A VERIFICATION SHEET FOR EACH FLOW METER, POST IT AND ATTACH TO WORK ORDER                                                                                                                                                                                                                                                                                                                                                                           |
|      | Note: Calibration sheet must be signed and original kept on site in the SOP binder.                                                                                                                                                                                                                                                                                                                                                                           |

#### For Field-Use Only - Completion Elements:

| Work Log: | og: Annual Inspection & Calibration of flow Meter Completed |       |      |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------|-------|------|--|--|--|--|--|--|
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
| Labour    |                                                             |       |      |  |  |  |  |  |  |
| Date      | Reg/Prem.                                                   | Hours | Memo |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |
|           |                                                             |       |      |  |  |  |  |  |  |



| Completed By      |                   |                     |  |
|-------------------|-------------------|---------------------|--|
| Please Print Name | Stephane Barbarie |                     |  |
| Signature Slip    | Ahan Buboi        | Date April 13, 2018 |  |

# Appendix D

Non-Compliance Correspondence to MECP



Ontario Clean Water Agency 5 Industrial Dr. Chesterville ON KOC 1H0 Phone: 613-448-3098 Fax: 613-448-1616

May 18, 2018

Mr. James Mahoney Supervisor, Ministry of the Environment and Climate Change James.Mahoney@ontario.ca

#### Subject: Moose Creek Sewage Lagoon - Notification of Non-Compliance

This letter provides notification of non-compliance with the effluent concentration and loading limit for TSS outlined in section 12(2) and the maximum flow rate specified in section 13(2) of Certificate of Approval No. 3-1555-91-936. This letter confirms the verbal notification of non-compliance provided by OCWA to the Ontario Ministry of the Environment and Climate Change's Spills Action Centre on May 11, 2018 (Reference # 0750-AYNLAF).

The following effluent parameters were exceeded:

| Parameter                 | Type of Limit                     | Type of<br>Sample | Result    | C of A Limit |
|---------------------------|-----------------------------------|-------------------|-----------|--------------|
| Total Suspended<br>Solids | Seasonal Average<br>Concentration | Grab              | 31.0 mg/L | 30.0 mg/L    |
| Total Suspended<br>Solids | Seasonal Average<br>Loading       | Calculation       | 382 kg/d  | 331 kg/d     |

The spring discharge of Moose Creek's sewage lagoons began on April 23, 2018 and ended on April 30, 2018. Four samples were collected during the discharge on April 23, April 25, April 28, and April 30. The concentration of total suspended solids in the samples was 29, 22, 48 and 25 respectively.

Cold temperatures extending well into the permitted discharge period delayed the start of the spring discharge. The blowers in both cells were started on March 13, 2018, but persistent cold temperatures into April caused enough ice to remain on the lagoons that batch dosing by boat had to be delayed. OCWA batch dosed the lagoons with aluminum sulphate on Friday April 20<sup>th</sup> and started the discharge on Monday, April 23<sup>rd</sup>. In attempt to ensure enough capacity until the next discharge period and remain within the discharge time frame specified in the Certificate of Approval, the flow rate was maintained at approximately the maximum allowed. However, the daily maximum of 11,040 m<sup>3</sup>/day specified in section 13(2) was slightly exceeded on most days during the discharge. Please see the attached PAR for details. It should be noted that stream flows remained higher than normal in the receiving stream throughout the discharge period. The elevated TSS concentrations in conjunction with the high flow rates resulted in the average loading for TSS over the discharge period to exceed the limit of 331 kg/d.

It should also be noted that all other parameters remained well below the C of A limits throughout the discharge. A complete listing of all sample results obtained during the spring discharge can be found in the Lagoon Discharge PAR, attached.



Ontario Clean Water Agency 5 Industrial Dr. Chesterville ON KOC 1H0 Phone: 613-448-3098 Fax: 613-448-1616

If you have any questions or concerns, please do not hesitate to contact me at (613) 448-3098.

Sincerely,

Dawn Crump Process & Compliance Technician Seaway Valley Cluster

Cc: Marc Chenier, CAO/Clerk, Township of North Stormont Stephane Barbarie, Senior Operations Manager, OCWA

#### ONTARIO CLEAN WATER AGENCY LAGOON PERFORMANCE ASSESSMENT REPORT

 MUNICIPALITY:
 TOWNSHIP OF NORTH STORMONT

 PROJECT:
 MOOSE CREEK LAGOON SYSTEM

 PROJECT #:
 6990

 DESCRIPTION:
 TWO CELL FACULTATIVE AERATED LAGOON SYSTEM WITH ONE SEWAGE PUMPING STATION AND CONTINUOUS ALUM FEED SYSTEM

 FOR PHOSPHORUS REMOVAL
 FOR PHOSPHORUS REMOVAL

|                            | SAMPLE RESULTS                   |        |        |        |        |         |                  | 91,320 m <sup>3</sup> |
|----------------------------|----------------------------------|--------|--------|--------|--------|---------|------------------|-----------------------|
| GRAB SAMPLE                |                                  |        |        |        |        |         |                  |                       |
|                            | SAMPLE DATE                      | 23-Apr | 25-Apr | 28-Apr | 30-Apr | Average | C OF A OBJECTIVE | C OF A LIMIT          |
|                            | CBOD                             | 10     | 12     | 20     | 14     | 14.0    | 15.0             | 30                    |
|                            | TSS                              | 29     | 22     | 48     | 25     | 31.0    | 20.0             | 30                    |
| START, END, AND            | TP                               | 0.43   | 0.51   | 0.54   | 0.55   | 0.51    | 0.5              | 0.7                   |
| EVERY 0.5 M OF<br>DRAWDOWN | $NH_3 + NH_4$                    | 5.12   | 4.43   | 5.7    | 5.3    | 5.2     | N/A              | 15                    |
| DURING                     | H <sub>2</sub> S                 | <0.02  | 0.03   | <0.02  | <0.05  | 0.019   | ABSENT           | 0.17                  |
| DISCHARGE                  | TKN                              | 13.4   | 12.6   | 14.4   | 14.3   |         |                  |                       |
|                            | Nitrite                          | <0.10  | <0.10  | <0.10  | <0.10  |         |                  |                       |
|                            | Nitrate                          | <0.10  | <0.10  | 0.14   | 0.18   |         |                  |                       |
|                            | pH (on site)                     | 8.3    | 8.46   | 8      | 8.35   |         |                  |                       |
| AT LAGOON                  | Conductivity (on site)           | 700    | 600    | 620    | 660    |         |                  |                       |
| EFFLUENT<br>DISCHARGE      | Temp (on site)                   | 7.1    | 8.5    | 8.8    | 10     |         |                  |                       |
| OUTFALL                    | E. coli                          | 330    | <10    | <10    | 1820   |         |                  |                       |
| STRUCTURE                  | un-ionized NH3 (calc)**          | 0.09   | 0.11   | 0.17   | 0.13   |         |                  |                       |
|                            | undissociated H <sub>2</sub> S** | ND     | 0.0015 | ND     | ND     |         |                  |                       |

|                  |             | UPSTREA     | M RESULT | s      |
|------------------|-------------|-------------|----------|--------|
| SAMPLE DATE      | 23-Apr      | 25-Apr      | 28-Apr   | 30-Apr |
| CBOD             | 23-Api<br>1 | 23-Api<br>1 | 1        | <1     |
| TSS              | 4           | 4           | 4        | 33     |
| TP               | 0.05        | 0.08        | 0.08     | 0.11   |
| NH3 + NH4        | < 0.05      | 0.14        | < 0.05   | 0.14   |
| H <sub>2</sub> S | <0.01       | <0.01       | 0.01     | 0.03   |
| TKN              | 1.2         | 1           | 1.2      | 1.5    |
| Nitrite          | <0.10       | <0.10       | <0.10    | <0.10  |
| Nitrate          | 1.99        | 2.01        | 2.88     | 3.19   |
| pН               | 8           | 8.07        | 8.30     | 8.25   |
| Conductivity     | 950         | 810.0       | 940      | 980    |
| Temp (on site)   | 6.4         | 7.1         | 7.9      | 7.7    |
| E. coli          | 10          | <10         | <10      | 40     |

|                  | DOWNSTREAM RESULTS |        |        |        |  |  |
|------------------|--------------------|--------|--------|--------|--|--|
|                  |                    |        |        |        |  |  |
| SAMPLE DATE      | 23-Apr             | 25-Apr | 28-Apr | 30-Apr |  |  |
| CBOD             | 1                  | 5      | 5      | 3      |  |  |
| TSS              | 4                  | 25     | 31     | 19     |  |  |
| TP               | 0.05               | 0.22   | 0.19   | 0.16   |  |  |
| NH3 + NH4        | 0.06               | 1.51   | 2.32   | 0.85   |  |  |
| H <sub>2</sub> S | <0.02              | <0.01  | <0.01  | <0.01  |  |  |
| TKN              | 0.9                | 4.6    | 4.4    | 3.3    |  |  |
| Nitrite          | <0.10              | <0.10  | <0.10  | <0.10  |  |  |
| Nitrate          | 1.96               | 1.92   | 2      | 2.34   |  |  |
| pН               | 8.1                | 8.23   | 8.30   | 8.20   |  |  |
| Conductivity     | 950                | 720    | 880    | 890    |  |  |
| Temp (on site)   | 6.0                | 6.9    | 7.8    | 7.7    |  |  |
| E. coli          | <10                | 10     | <10    | 560    |  |  |

West East SAMPLE DATE CBOD (mg/L) 10-Apr-18 34 4 TSS (mg/L) 19 17 CELL CONTENTS/ TP (mg/L) 0.88 0.61 PRE DISCHARGE NH3 + NH4 (mg/L) 6.16 7.43 SAMPLES TKN (mg/L) 12.1 11.9 S2-0.02 <0.01 E. coli 940 850

CBOD/SS/TP exceed when the seasonal average exceeds criteria  $\rm NH_3/NH_4$  &  $\rm H_2S$  exceed when single sample result exceed

\*\*Undissociated H2S, unionized NH3, based on in-house calculations

|                         | AVG. LOADING | C OF A LIMIT |
|-------------------------|--------------|--------------|
| CBOD (kg/d)             | 159.8        | 331          |
| TSS (kg/d)              | 353.9        | 331          |
| TP (kg/d)               | 5.8          | 7.7          |
| NH3 + NH4 (kg/d)        | 58.8         | 166          |
| H <sub>2</sub> S (kg/d) | ND           | 1.9          |
|                         |              |              |

|                     | 23-Apr | 24-Apr | 25-Apr | 26-Apr | 27-Apr | 28-Apr | 29-Apr | 30-Apr |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| DISCHARGE FLOW      |        |        |        |        |        |        |        |        |
| (m <sup>3</sup> /d) | 9,730  | 11,249 | 11,622 | 11,175 | 11,886 | 11,886 | 11,886 | 11,886 |

| Daily Loading | 23-Apr | 24-Apr | 25-Apr | 26-Apr | 27-Apr | 28-Apr | 29-Apr | 30-Apr | Average |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| BOD (kg)      | 97.3   | 135.0  | 139.5  | 223.5  | 237.7  | 237.7  | 166.4  | 166.4  | 175.4   |
| TSS (kg)      | 282.2  | 247.5  | 255.7  | 536.4  | 570.5  | 570.5  | 297.2  | 297.2  | 382.1   |
| TP (kg)       | 4.2    | 5.7    | 5.9    | 6.0    | 6.4    | 6.4    | 6.5    | 6.5    | 6.0     |
| NH3 (kg)      | 49.8   | 49.8   | 51.5   | 63.9   | 68.0   | 68.0   | 63.5   | 63.5   | 59.7    |
| H2S (kg)      | ND     | 0.34   | 0.35   | ND     | ND     | ND     | ND     | ND     | N/A     |

 YEAR:
 2018

 WATER COURSE:
 SOUTH

 DESIGN CAPACITY:
 302 m³/

<u>2018</u> SOUTH NATION RIVER 302 m³/day